
Virtual Time II: Storage Management
in Distributed Simulation

David Jefferson
jefferson@lanai.cs.ucla.edu

UCLA
May 1990

Abstract:

The main contribution of this paper is the
Cancelback Protocol, an extension of the
Time Warp mechanism that handles stor-
age management. It includes both fossil
collection, the recovery of storage for mes-
sages and states that can never again influ-
ence the computation, and cancelback, the
recovery of storage assigned to messages
and states at times so far in the future that
their memory would be better used for
more immediate purposes. It guarantees
that Time Warp is optimal in its storage re-
quirements when run in shared memory,
i.e. Time Warp will successfully complete a
simulation using no more space than it
would take to execute the same simulation
with the sequential event list algorithm.
This is better by a factor of two than the
only previously published result. Without
this protocol (or equivalent) Time Warp’s
behavior can be unstable; hence it should
be considered an essential part of Time
Warp mechanism, rather than simply a re-
finement.

In addition we also prove that asynchron-
ous conservative algorithms, including all
of the Chandy-Misra-Bryant (CMB) mecha-
nisms, are not optimal; they cannot neces-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

0 1990 ACM-0-89791-404-X/90/0008/0075 $1.50

sarily execute a simulation in the same
amount of space as a sequential execution.
In some cases a simulation requiring space
n+k when executed sequentially might re-
quire O(nk) space when executed on n pro-
cessors by CMB.

1. Introduction

An optimistic simulation mechanism is
one that takes risks by performing specula-
tive computation which, if subsequently
determined to be correct, saves time, but
which if incorrect, must be rolled back. In
contrast, a conservative mechanism is one
that never indulges in speculative compu-
tation and hence never has to roll back.
An asynchronous conservative mecha-
nism is a conservative method in which
subsimulations that do not interact can be
independently scheduled, with no upper
bound on the difference in virtual time be-
tween the farthest ahead and farthest be-
hind parts of the simulation. The Chandy-
Misra-Bryant methods [Misra 861 are the
best-known asynchronous conservative
methods today; TW is the best-known opti-
mistic method.

By now a great deal is known about the
real time performance of the Time Warp
(TW) [Jefferson 841 and CMB mechanisms,
both empirical, e.g. [Berry 851, [Chandy 791,
[Fujimoto 881, [Fujimoto 891, [Fujimoto 901,
[Hontalas 89a], [Hontalas 89b], [Jefferson 871,
[Lakshmi 871, [Leung 893, [Lomow 883,
[Lubachevsky 891, [Presley 891, [Reed 881,

-75

[Reiher 893, [Reiher 90a], [Su 891, [West 881,
[Wieland 891, and analytical, e.g. [Laven-
berg 831, [Jefferson 841, [Mitra 841, [Lin 89a],
[Lin 89b], [Lin 90a], [Lin 90b], [and Lipton
901. However very little is known about
their space performance. In this paper we
study the memory requirements for both
optimistic and conservative methods of
parallel discrete event simulation.

We say that a simulation mechanism X ap-
plied to simulation s requires an amount
of memory mc,s if, all possible executions
of s under Z correctly complete, but in any
amount of memory less than mc,s there is
at least one possible execution that runs
out of memory. In m c,s we count all
memory used to hold the state of the simu-
lation, and also that used to hold the event
notices or event messages. However, we
do not count the constant amount of
memory per processor needed for certain
global purposes, e.g. deadlock detection and
resolution in some CMB protocols, or GVT
calculation and distribution in TW.

If Q is the standard sequential event list
mechanism then the minimal amount of
memory in which a simulation s can be
executed is mQ,s. In this paper we show
that for any simulation s and any amount
of memory greater than or equal to mQ,s,
TW with the Cancelback Protocol can al-
ways execute s to completion. In contrast,
we will give a family of examples to prove
that the Chandy-Misra-Bryant (CMB) sim-
ulation mechanisms can be very poor in -
their storage requirements. It is important
to realize that neither TW nor any other
parallel simulation mechanism can opti-
mize both space performance and time per-
f ormance simultanedusly. To achieve
.speedup from parallelism using TW it is
still typically necessary to have several
times the minimal amount of memory.

Optimistic methods have completely dif-
ferent storage management problems and
opportunities from conservative methods.
The results in this paper suggest that the
presence of rollback as a synchronization
tool allows much greater flexibility in the
management of buffers in asynchronous
distributed systems than is possible with
conservative methods.

The Cancelback Protocol has been imple-
mented in its entirety at Jade Simulations
[Lomow 881, and partially at the JPL in the
Time Warp Operating System [Jefferson
871. No empirical performance studies
have been published, however.

2. Asynchronous conservative methods
are not space-optimal

In their seminal paper [Chandy $11 the au-
thors claimed without proof (in the ab-
stract) that their parallel execution mecha-
nism needs no more memory to complete
a simulation using the CMB algorithms
than the standard sequential event list al-
gorithm requires. In this section we prove
that this is not so. It suffices to give a sin-
gle example simulation class for which this
bound cannot be met. This proof applies
only to asynchronous conservative meth-
ods. Synchronous methods [Lubachevsky
891 that guarantee that all parts of the sim-
ulation remain at roughly equal virtual
times are not covered.

Consider the simulation R illustrated in
Fig. 1, with the pattern of event scheduling
shown in Fig. 2. Each vertical line repre-
sents virtual time for one of the four pro-
cesses, while the non-vertical arcs repre-
sent event scheduling (messages). Process
A schedules events ml through m4 for B at
low virtual times less than f2, while C
schedules m5 through m8 for D at high vir-

76

c

Fig. 1: Communication topology for exam-
ple CMB simulation R

tual times greater than t2. In addition, A
and C each schedule three events for
themselves to indicate when to wake up
and schedule other events, though these
will play no significant role in our analysis.

We now analyze the amount of storage
necessary to execute this simulation se-
quentially. We need only count the mem-
ory needed for event notices (correspond-
ing to message buffers in parallel execu-
tion), since CMB simulations always take
the same amount of state space as is re-
quired sequentially. Notice that event n14
is scheduled at a later virtual time than ml
through m3, but it must be processed at an
earlier virtual time; m4 thus preempts
messages m 1-m3. In CMB it is not possible
for preempting event messages to be trans-
mitted on the same channel as the pre-
empted messages because each channel is
presumed to be FIFO. But it is possible if
the preempting message, rnqr travels on a
separate channel.

To determine the sequential storage re-
quirement fnQR we observe that at virtual
time tl when m 4 is processed by 5 there
must be memory for 4 event notices to
hold m 1-m4. Since there must also be one
to hold mo, we conclude that this simula-
tion needs 5 event notice buffers to execute

A B c

m6

m5
m8

D

Fig. 2: Event relationships in simulation FL
The vertical axes are virtual time. rq)‘mg
are event messages.

up to time t2. Similar arguments show
that C and D need 4 message buffers at
time fd, but by that time all of the storage
involving A and B has been released.
Hence 5 event notices are necessary and
sufficient for sequential execution of the
simulation in Fig. 2.

Consider now what happens if the simula-
tion is executed in parallel by any of the
CMB mechanisms. After event message
mg has been sent the two subsimulations
A-5 and C-D are disjoint and will execute
independently in parallel. This improves
the simulation’s time performance, but it
raises its space requirement. Suppose the
scheduling is such that the C-D subsystem
executes to time f3, just before sending mg.
At time f3 there are 3 messages buffered,
m5-m7. Message m. and the 3 messages C
sent to itself have all been deleted, and m&
has not yet been generated. Meanwhile,
suppose the A-8 subsystem executes to vir-
tual time to, At this point process A has
sent 2 event messages to 5, m 1 and m2,
which we can presume are buffered at 5,

77

and it is about to send m3, as well as a mes-
sage to itself. There are no messages buf-
fered at either A or C.

With A-B at time to and C-D at time t, a
total of 5 event message buffers are in use.
But for either subsystem to make any fur-

ther progress, more buffers are needed. A
needs to send m3 which must be buffered
at 5, and C needs to send “8 which must
be buffered at D. Although the simulation
can execute sequentially with 5 buffers, if
its scheduling starts out this way under
CMB, it cannot complete with 5 buffers.
The simulation is deadlocked, but not in
the classical kind of CMB deadlock that
arises from cycles in the communication
graph. It is a resource deadlock that is un-
breakable. From this example we can thus
conclude that:

The CMB mechanisms are not guaran-
teed to complete in the sume amount of
storage as the corresponding sequent ial
execution.

This result does not depend on the as-
signment of processes or distribution of
memory among the processors, nor on
whether memory is shared or distributed.
Unless additional synchronization con-
straints are imposed it is always possible
that this simulation will fail to complete
when given only the amount of memory
needed for sequential execution. We can
formalize with the following result (simi-
lar to a result proved in [Lin 89~1).

Thm. 1: There exists a simulation S such
that

a> S is composed of n pairs of processes;
b) each pair needs k buffers;
d S can execute in O(n+k) buffers when

executed sequentially;
d) but S requires O(nk) buffers to guaran-

78

tee completion when executed by any
CMB mechanism.

Proof sketch: Take a two-process simula-
tion such as R in Fig. 2 in which one mes-
sage preempts k-7 others; a pair then re-
quire k buffers to complete. Construct
simulation S as in Fig. 3 from n “copies” of
R, but modified so that (a) all of the n com-
ponents use disjoint regions of virtual
time, and (b) an initial message is sent to
each component to start it. Simulation S,
with 2n processes, can execute sequentially
using n+k- 7 event notice buffers, but re-
quires n(k-l)+l buffers to guarantee com-
pletion. End proof.

virtual time

r s2

sn

Fig. 3: Simulation S constructed by joining
II “copies” of subsimulation S) Each si exe-
cutes in a different region of virtual time.

3. The problem of flow control in TW

Most descriptions of TW rely on fossil col-
lection as the only storage management
mechanism. Unfortunately fossil collec-
tion alone (so named because it recovers
memory whose contents are so old that
they cannot have any future effect on the
computation) is not sufficient for stable
memory management in TW. Some add-

itional mechanism is necessary for “storage
management of the future” (which in-
cludes “flow control”). There are many
flow control protocols in the literature
[Chu 791, but unfortunately, none of the
known protocols can be applied success-
fully to TW; instead the entire problem of
flow control must be rethought from first
principles because many issues arise in op-
timistic systems that have no analog else-
where. Among the differences are these:

(1) Conventional systems communica-
tion are usually organized into unidirec-
tional, order-preserving channels, each
with separate queueing, so that flow con-
trol can be done separately on each chan-
nel. But in TW there is no notion of a
“channel”; any process can send a message
to any other at any time. Nor can we view
this as implicitly specifying a complete
communication graph because the costs in
that case would grow quadratically with
the number of processes.

(2) In conservative systems, once a message
has been read by the receiver it can be
deleted. But in TW a message that has
been read must still be saved for a while in
case the receiver rolls back and needs to re-
process it.

(3) In conventional systems message trans-
mission is order-preserving along each
channel. But under T”W messages are not
processed in the order of sending; they
must be processed strictly in order of rvt,
regardless of the real time order in which
they arrived or were sent.

We illustrate a flow control problem for
TW in Fig. 4. A message m arrives at pro-
cess A, but there is sufficient buffer space
for only 3 messages and all 3 slots are al-
ready filled. We assume, however, that
there is always one “temporary” buffer that

can hold m momentarily so that its header
can be inspected. m has an rvt of 48, which
is less than that of any message already en-
queued. We shall further assume that all
four messages are “correct”, i.e. none of
them will be cancelled later by antimes-
sages, and thus no buffer space will ever be
released by ordinary cancellation. None of
the messages has yet been processed by the
receiver. How should TW handle this ar-
riving message?

One thought is that flow control is already
too late because message m should not
have been generated; its sender, 5, should
have been blocked by the operating system
and prevented from sending. But that is
an unsatisfactory answer. In this example:
message m carries an rvt less than those on
the messages already enqueued, so m
should be processed before them. Perhaps
one of their senders should have been
blocked earlier still, but that argument fails
because no protocol could have anticipated
the pattern of timestamps on arriving mes-
sages.

full

sender B

receiver

send time

receive time

~@iEJJ

m m’ m” m”’ A
Fig. 4: Message m with rvt=48 arrives at A,
whose three buffers are already full.
GVT<=48.

We also cannot use a protocol in which the
sender waits for an ACK or a timeout, al-
lowing A to simply NACK message m, ex-
pecting 5 to resend it later when space be-
comes available. If m had the highest rvt of
the four messages that would be appropri-
ate, but in this example, unless some ac-
tion is taken space will never become

79

available. We might hope, for example,
that A will process some of the messages in
its queue and free space for the arriving
message. But although A may indeed pro-
cess them optimistically, none of them can
be fossil-collected because their rvt’s are all
greater than 48, while GVT remains less
than or equal to 48 until after m is pro-
cessed.

The Cancelback Protocol makes room for
the arriving message by removing one of
those already enqueued. It chooses mes-
sage m”’ and refurns it to E, making room
for m. It preempts the storage holding
message m “’ and allocates it to m because m
has a lower rvt. m”’ travels backward in
virtual time, and enters the output queue
of E, where it annihilates with the
negative copy saved there.

This protocol has the effect of slowing
down senders with respect to receivers,
although not by blocking them. Instead, it
causes them to roll back and re-execute. If
E has reached a virtual time greater than
51 at the moment of cancelback, it rolls
back to time 51 and then executes forward
again, regenerating m”‘. If there is still not
enough room at A when m”’ arrives the
second time it may again be sent back, pos-
sibly causing a second rollback. Alterna-
tively, a different message may be chosen
for cancelback the second time. When E
eventually crosses virtual time 51 in the
forward direction it will regenerate the
message and resend it.

The message chosen for cancelback need
not come from the same sender as the ar-
riving message. It is not even necessary for
it to be in the input queue of the same pro-
cess as the arriving message. In general,
the arrival at some process Q of a message
from process P might cause a message in
the input queue of a third process V and to

be sent back to a fourfh process U. In con-
ventional ffow control protocols there is
no analog of this behavior. We should
bear in mind, of course, that flow control is
only part of the full storage management
problem in TW. In the full Cancelback
Protocol an output message or a state
might be chosen for cancellation instead of
an input message.

There is one final worry that one might
have about this Cancelback Protocol. A re-
verse message may cause the sender to roll
back, re-execute, and then resend, only to
find that there is still not enough buffer
space, and the sender must roll back, re-ex-
ecute, and resend again. Although this cy-
cle is not infinite, it can repeat any finite
number of times, and is wasteful. It is defi-
nitely desirable to attenuate the “busy
cancelback” aspect of flow control if possi-
ble. We consider this issue to be part of a
larger load management issue in TW, but
further discussion of such issues is beyond
the scope of this paper.

4. The Cancelback Protocol and the full
storage management problem in TW

Besides input messages there are two other
kinds of dynamic memory allocated by
TW: output messages and states. Both con-
tribute to memory management problems
and must be unified with flow control be-
fore we have a complete memory manage-
ment strategy. The full Cancelback Proto-
col is similar to one proposed in [Gafni 851.
The main differences are that (a) ours is
cast in a form that makes some use of
shared memory so that the protocol is
simpler, and (b) ours allows a simulation
to complete in half the memory of hers.

Whenever a message is sent by a process
two complementary copies are created, the
positive copy transmitted to the receiver,

80

and the negative copy saved in the sender’s
output queue. Messages in the sender’s
output queue can fill memory just as
surely as messages in a receiver’s input
queue can. This problem is thus exactly
symmetrical to the usual flow control
problem, but it has no analog in conserva-
tive communication protocols. Likewise,
saved process states compete for the same
dynamic memory as messages. If processes
execute too far forward in virtual time the
system may run out of memory because
there are too many saved states.

In the Cancelback Protocol messages and
states are treated symmetrically. A state is
like a message-to-self, whose svt is the vir-
tual time it is oz.4 tput from an event (i.e.
produced), and whose rvt is the virtua1
time it is input to the next event (i.e. used).
The major difference between messages
and states is that since a state is always
“sent” from a process to itself, TW does not
explicitly represent both a negative and a
positive copy.

Before presenting the Cancelback Protocol
we must explain the unusual assumptions
we make to strengthen and simplify our
results:

Al. Shared-memory architecture: We as-
sume TW is running in shared-mem-
ory.

A2. Ideal delivery: Messages are delivered
instantly, reliably, and atomically.

A3. Instantaneous GVT: The true instant-
aneous value of GVT is always available
as a variable in shared memory.

These assumptions are very powerful and
need justification. We assume Al for two
reasons. First, fragmentation caused by
memory being partitioned across the nodes

of a distributed architecture would make it
very clumsy to actually achieve true stor-
age optimality. Secondly, shared memory
allows us to think of messages as instantly
delivered in zero real time (AZ), and as a
result, the instantaneous GVT value is al-
ways available (A3), since every event
completion and every message arrival can
update GVT atomically.

Although we cast the protocol in shared-
memory form, we believe that the results
extend to distributed architectures because
we are concerned here with optimizing
space instead of time. For these results to
apply to a distributed architecture we need
to allow the possibility of splitting queues
across nodes, and we must permit the
shared memory aspects of the Cancelback
Protocol to be emulated in distributed
memory with only constant memory over-
head per processor. With sufficient time
this is in fact possible, e.g. by assuming that
the entire computation is conducted in
shared virtual memory. Such possibilities
are generally impractical with current tech-
nology, and it is thus more accurate to say
that the Cancelback Protocol, when trans-
lated into a fully distributed form, is only
approximately optimal in its memory re-
quirements.

A4. No dynamic creation or destruction:
Processes are neither created nor de-
stroyed at run time.

A4 could be relaxed, but it would require
us to consider process creation and destruc-
tion as storage allocation and deallocation
operations.

A5. Global memory allocation: Memory
for all queues of all processes is allo-
cated from a single common pool.

A5 is a natural assumption, so that frag-

81

mentation issues can be ignored, and so
that the protocol to satisfy the needs of one
process by taking it memory away from
another.

A6. All messages and states have fhe same
length.

We assume memory is measured in units
of “pages”, each of the length to hold exact-
ly one message or process state. A6 avoids
dealing explicitly with growing and shrink-
ing states and with memory fragmentation
issues.

A7. Sfate-save after every event: TW
saves the fur2 state of a process after ev-
ery event.

Although TW can get away with saving
process states (or state deltas) less often, do-
ing so reduces the amount of storage need-
ed for state queues, thereby weakening our
result.

A8. Nonzero virtual time delays: For
each event message m we assume m.svt
-=z m.rvt.

A9. No multiple-message events: No two
event messages arrive at the same re-
ceiving process with the same rvt (or
else all but at most one of them is an-
nihilated).

A8-A9 prevent any possibility of a causal
cycle that takes zero virtual time, and
avoid certain religious controversies over
the tie-breaking semantics of multi-mes-
sage events.

The Cancelback Protocol must be described
at two levels: the global level and the pro-
cess level. At the global level the only
quantities of interest are f ree-mem, the
amount of available memory in pages, and

global virtual time (GVT). GVT plays a fun-
damental theoretical role in all commit-
ment issues. It was originally defined in
[Jefferson 821 and [Jefferson 841, but here we
can simplify the definition because we
assume instantaneous message transmis-
sion so that no messages are ever “in tran-
sit” when GVT is queried.

Definition: At any instant of real time GVT
is defined to be the minimum of the
local virtual times (Ivt’s) of all processes.

The most important properties of GVT are
well established for TW without the Can-
celback Protocol, and also apply to TW
with it:

(a) No message sent in the forward direc-
tion ever carries an rvt time stamp
strictly less than GVT, and no message
sent in the reverse direction ever car-
ries an svt timestamp strictly less than
GVT.

(b) No rollback ever occurs to a time ear-
lier than GVT.

(c) GVT never decreases.

For any process p located on n the follow-
ing invariant hold at all instants of real
time:

GVT <= p.lvt 4.1

For any message u transmitted in the
either the forward or reverse direction

GVT <= u.svt < u.rvt 4.2

holds at the moment of transmission.

The TW system must have at least two ex-
ecution priority levels. The lowest level,
Level 0, is the priority for user processes.

82

Level 1 is the priority at which interrupt or
trap routines run for handling message ar-
rivals, state saving, and GVT calculation.
The Cancelback Protocol itself is invoked at
Level 1 by interrupt or trap at any of the
three times when dynamic storage is allo-
cated: the arrival of a message in the for-
ward direction, the arrival of a message in
the reverse direction, and the time of a
state save.

A TW process is considered to have four
parts (in addition to its code):

h/t: local virtual time
input: input msg queue (ordered by rvt)
output: output msg queue (ordered by svt)
state: state queue (ordered by rvt or svt)

An item (message or state) has these fields:

SVt send vt
sndr sender
rvt receive vt
rcvr receiver
queue dest. queue

(real)
(process name)
(real)
(process name)
(“inpuf”, “state”,

or “output”)
sign sign of message (+ or -)
text of msg or state (any type)

The same representation is used for both
states and messages so that a uniform pro-
tocol can handle both. One item is pre-
sumed to take one “page” of memory. The
syntax used is such that u .svt is the send
virtual time of item u. We also use a
“macro” to collapse the code along its
of symmetry and avoid repetitious
analysis:

vt(u) = case u.queue of
output: us/t;
state: u.rvt;
input: u.rvt

endcase

lines
case

The full Cancelback Protocol is shown in
Fig. 5. It is in the form of routine a r -
rive(u,p) that controls what happens in TW
when a message or state u “arrives” at a
process p and to be stored. For a state,
“arriving” means that it has to be saved.

In Line 4 the routine delete(v) is called,
which deletes one item, recovering one
page of memory. In Line 5 the routine
cancel(v) is called. In the case of a state this
means the same as delete(v), but in the case
of a message it means dequeue the message
and send it (a) forward if it came from the
output queue, or (b) backward if it came
from the input queue. Because it is called
within an atomic conditional, we are guar-
anteed that both the sender and receiver of
a message cannot both concurrently decide
to cancel their respective copies. One will
decide to cancel first, then both copies will
annihilate atomically.

We now describe the protocol line by line:

Line 0: When an item arrives it is placed in
the operating system’s internal buffer, and
free-mem is decremented. This cannot fail
because we presume that the operating sys-
tem has reserved enough memory to buf-
fer one item (state or message). Hence we
can assert that free-mem >= 0 before Line 0,
and that free-mem >= -1 afterward. The re-
mainder is devoted to guaranteeing that
free-m em >= 0 again when we leave.

Line 1: Line 1 means “the ivt of process p is
min’d with vt(u)“. When macro vt is ex-
panded, it encodes three cases. Depending
upon whether the arriving item u is a
reverse message, a state, or a forward mes-
sage, the Ivt of p is min’d with either the svt
of the item or its rvt. (Note, however, that
since an “arriving” state has an rvt equal to
Ivt, this line is always a no-op for states

a3

procedure arrive(u, p):
(f ree-mem = free-mem -1; ! New arrival takes one page of memory

p.lvt = p.lvt min id(u); ! Performs rollback or no-op
insert(p,u); ! Enq arriving item; may cause annihilation (2)
if free-mem < 0

then [;I
atomic-if 31: vt(v) c GVT (4)

then ! Fossil collection; delete one state or msg (4)
delete(v);

else 1;;
atomic-if 3: v.svt >= GVT (5)

then ! Cancel item in forward OY backward direction (5)
cancel(v) (5)

else fail(“Out of memory”) (6)
endif

endif
endif

1;
procedure insert(p,u):

(TW-enqueue(p.u.queue, u);
if annihilation occurred during enqueueing

then free-mem = free-mem + 2
1;

procedure delete (p,u):
(TW-dequeue-and-discard(p.u.queue, u);

free-mem = free-mem + 1
1;

procedure cancel (u):
(p = location(u);

case uqueue bf
output:: (TW-dequeue(p.output, u);

p.lvt = p.lvt min u.svt; ! possible rollback to u.svt
arrive(u, u.rcvr) ! will cause annihilation

1;
state: (Fti-dequeue-and-discard(p.state, u);

. = p.lvt min u.svt; ! possible rollback to u.svt
free-mem = free-mem + 1

1;
input: (TW-dequeue(p.input, u);

p.lvt = p.lvt min u.rvt; ! possible rollback to u.rvt
arrive(u, u.sndr) ! will cause annihilation

1
endcase

1;

Fig. 5: The Cancelback Protocol

84

being saved.) Upon return from the proto-
col, execution will proceed at the new val-
ue of ‘Ivt. A rollback occurs whenever the
min operation causes Ivt to decrease.

Line 2: The arriving item u is enqueued in
the appropriate queue (input, output, or
state) of process p. The enqueueing opera-
tor is TW-style, which means sorted in
order by vt and with annihilation if a mes-
sage encounters its own antimessage.
When the enqueueing results in annihila-
tion, free-mem is incremented by 2.

Line 3: This is the beginning of code in-
tended to ensure that free-mem >= 0 upon
exit. In most cases Lines 4-4 will not exe-
cute at all, since there will be available
space. Notice that if Line 2 results in an
annihilation, then the test here always
fails. It is a general property of the Can-
celback Protocol that a message that annih-
ilates and releases space is a2zuuys accepted.

Line 4: This code that performs fossil col-
lection, i.e. the deletion of an old message
or state that cannot affect the future course
of the computation. An important nota-
tion used in Lines 4 and 5 is an atomic con-
ditional with existential quantification and
variable binding. Code of the form

atomic-if 3v: P(v) then S(v)

means “if there is at least one item (input
message, output message, or state) that is
in enqueued at some process and that satis-
fies predicate P, then bind one such item to
variable v (chosen nondeterministically)
and perform action S(v); if there is no such
item v, then do the else clause”. This must
be done atomically, but the else clause as-
sociated with the conditional is not part of
the same atomic action.The scope of bind-
ing to variable v is limited to P(v) and S(v).

Again macro M(v) really encodes three sep-
arate conditions: any input message Vi such
that vi.rvt < GVT, or a state vs such that
v,.rvt < GVT, or an output message ve such
that v,.svt < GVT, can be deleted, recover-
ing one page of memory.

There is an asymmetry inherent in Line 4.
A message Vi in the input queue can only
be deleted when vi.rvt < GVT, which is
more restrictive than the condition for
output messages, which can be deleted
when v,.svt < GVT. Hence, the situation
can arise that v.svt c GVT C= v.rvt. Because
svt < GVT, the sender will never have to
roll back and resend the message, and its
copy can be deleted. But because rvt
>= GVT, the receiver may yet have to pro-
cess the message, or roll back and reprocess
it. Thus, although message-antimessage
pairs are created at the same moment in
virtual time, they are not necessarily de-
stroyed at the same moment.

Line 5: This is the “cancelback” line that
performs “flow control” and all other stor-
age recovery operations not associated with
commitment. It attempts to cancel a mes-
sage or state stored for some future virtual
time in order to make some room now, at
virtual time GVT. If there is any item v in
any process, whose vt is greater than GVT,
then it can be cancelled and re-produced
later. Notice that v does not have to be
from either the sender of u, or the receiver;
on the other hand, v can in fact be u.

To describe how cancelback works we con-
sider three cases separately: v is an input
message, an output message, or a state. If v
is an input message, then Line 5 is exactly
the protocol discussed in Section 3. Mes-
sage v is cancelled, which in the case of an
input message means that it is removed
from this input queue and sent in the re-
verse direction back to its original sender’s

85

output queue, where it will invoke this
same protocol, probably causing a rollback
and definitely causing an annihilation.
Since only messages v with GVT <= v.svt
are chosen, it cannot carry an svt less than
GVT, and thus it will never cause a rollback
to a time lower than GVT.

If v is an output message, then it is can-
celled in the forward direction, i.e. it is re-
moved from the output queue, and trans-
mitted toward the receiver where it will
annihilate with its antimessage and possi-
bly cause a rollback. Again, only messages
with GVT < = v.svt are chosen, and since
from Eqn, 4.2 we know that

GVT c= v.svt < v.rvt

no message will be transmitted in the for-
ward direction with v.rvt <= GVT. Hence,
no message cancelled by this Line can cause
a rollback to a time earlier than GVT.

Finally, if the item v chosen is a state, then
its svt is the virtual time it was created.
“Cancelling” a state means deleting it and
rolling back to time svt, just as though an
“antistate” were sent back from the object
to itself to annihilate with the state. Some
states may be future states, i.e. their svt is
greater than the Ivt of the process to which
they belong. If so, such a state must be the
product of the lazy reevaluation technique
(also known as jump forward) [West 881.
In any case, since GVT c= v.svt, the
rollback does not conflict with GVT.

The message or state v chosen for cancel-
back may very well be U, the one that just
arrived and was enqueued in Line 2. The
protocol then has the effect of “rejecting” u.
As written, this Line makes a nondeter-
ministic choice among all of the items v
such that v.svt >= GVT. From a memory
point of view this choice does not matter,

but from a time point of view it probably
does.

Line 6: When we get here the protocol has
failed; the only recourse is to to terminate.

5. Analysis of the Cancelback Protocol

We now show that TW can make progress
in the minimal amount of memory.

Thm. 2: Let a simulation S be decomposed
into processes pi, i=l ..n. Assume the entire
multiprocessor has total of M shared mem-
ory pages available, and that pi(t) is the
amount of memory needed by process pi at
virtual time t if executed sequentially, i.e.
the size of its state at virtual time t plus the
sizes of all of the event notices for pi that
would be on the event list at virtual time t
if it were executed sequentially. Then if

Vt<t’ (II i pi(t) <= M) 5.1

TW can execute a simulation to the point
where GVT>= t’ .

Proof: Suppose the protocol fails in Line 6,
at virtual time t’. From the conditions on
Lines 4-5 we can conclude that the follow-
ing holds when control reaches Line 6 on
some processor:

vv (v.svt < GVT <= vt(v)) 5.2

where v varies over all messages and states
stored in any queue of any process. Again,
we can separate this into the three cases
encoded by the macro vt (v). If we consider
three new variables, v, ranging over states,
Vi ranging over input messages, and v,
ranging over output messages, then condi-
tion 5.2 is equivalent to the following:

86

Vv, (v,.sti < GVT <= v,.rvt) 5.3

Vy (Vi.Sti < GVT <= Vi.rvt) 5.4
‘ifv, (v,.svt cGVT <= v,.svt) 5.5

Condition 5.3 says that at the time of mem-
ory exhaustion all states remaining in
memory have svt < GVT and have GVT <=
rvt, where svt is the virtual time it is “pro-
duced” and rvt is the time it is “consumed”.
Thus all states in memory “cover“ a
virtual time interval containing GVT. In
TW there is always exactly one state for
each process that covers G VT, and each
such state is correct because it was created
at a virtual time (svt) strictly less than GVT.
Hence we conclude:

Cl: The states in memory at the moment
of storage exhaustion are exactly those
that would be in memory at virtual
time GVT if the simulation were exe-
cuted sequentially.

Condition 5.4 says that when storage is ex-
hausted, exactly those input messages re-
main such that svt < GVT <= rvt . As with
states, all of these messages are correct, i.e.
the same as those that would be produced
by sequential execution, since their send
times are less than GVT. But unlike states,
there may be any number of such input
messages (including zero) for each process.
The critical observation is that there is a
one-to-one correspondence between the
messages satisfying Condition 5.4, and the
event notices that would be on the event
list at virtual time GVT if the simulation
were executed sequentially, because the
contents of the event list at any virtual
time t in sequential execution is exactly the
set of event notices that were scheduled at
times strictly earlier than t for execution at
times greater than or equal to t. Thus, if we
neglect any difference in storage required
by an event notice in a sequential execu-

tion and the corresponding message in a
parallel execution, we conclude:

C2: The input messages in memory at the
moment of storage exhaustion are ex-
actly the same as would in memory at
virtual time GILT in a sequential execu-
tion.

Finally, Condition 5.5 says that at the
moment of storage exhaustion all output
messages in memory satisfy both svt < GVT
and svt >= GVT. These conditions are con-
tradictory, and thus there can be no such
messages. Of course, in sequential execu-
tion there is no notion corresponding to an
output message. Hence, we conclude:

C3: The output messages in memory at
the moment of sforage exhaustion are
exactly the same as would in memory at
virtual time G VT in a sequential execu-
tion, namely none.

Combining the results Sl-S3 we conclude:

C4: The input messages, output messages,
and states in memory at the moment of
storage exhaustion are the same as
would be in memory af time GVT if the
simulation were executed sequentially.

At the moment of storage exhaustion in
Line 6 the protocol’s extra internal buffer is
full holding item u, and counting it the
protocol uses exactly the space the sequen-
tial algorithm would. But the internal
buffer is part of the constant storage be-
longing to the operating system, and does
not count. Therefore, at the moment of
storage exhaustion the dynamic storage
used is exactly one page less than needed
for sequential execution. If Line 6 is not
executed while GVT c t’, then from S4 we
know that execution will proceed to
GVT = t’. End proof.

87

Cor.: If mQ,S <= M then simulation S can
complete execution under TW in M pages
of memory.
Proof: Since Vt<= (C i
simulation can execute
Proof

Pi(f) <= mQ,S), the
to GVT >= 00. End

6. Acknowledgements

The germ for the new ideas in this paper
came during conversation with Darrin
West. The final form was aided by discus-
sion with Peter Reiher and Brian Beck-
man. Early drafts were criticized by Li-wen
Chen, Sung Cho, Bob Felderman, Richard
Fujimoto, Wen-ling Kuo, Kong Li, Jason
Lin, David Nicol, and David Smallberg.

7. References

[Berry 851 Orna Berry and David Jefferson, “Critical
Path Analysis of Distributed Simulation”, Proc. 1985
SCS Conf. on Did. Sim., San Diego, Jan., 1985

[Chandy 791 K. Mani Chandy and Jayadev Misra,
“Distributed Simulation: A case Study in the Design
and Verification of Distributed Programs”, IEEE
Trans. on Software Engineering, SE-5(5), Sept., 1979

[Chandy 811 K. Mani Chandy and Jayadev Misra,
“Asynchronous Distributed Simulation via a
Sequence of Parallel Computations”, CACM, Apr.
1981

[Chu 791 W. W. Chu (ed), Advances in Computer
Communications and Networking, Artech House,
Dcdham, Mass., 1979

[Fujimoto 881 R. M. Fujimoto, “Performance measure-
ments of distributed simulation strategies”, Proc.
2988 SCS Conf. Did. Sim., Vol. 19, No. 3, SCS, Feb.
1988

[Fujimoto 891 Richard M. Fujimoto, “Time Warp on a
Shared Memory Multiprocessor”, Proc. 1989 Int’l
Conf. Parallel Processing, Aug. 1989

[Fujimoto 901 Richard M. Fujimoto, “Performance of
Time Warp under synthetic workloads”, Proc. 1990

SCS Conf. Did. Sim., Vol. 22, No. 2, SCS, Jan., 1990

[Gafni 851 Anat Gafni, “Space Management and Can-
cellation Mechanisms for Time Warp”, Ph.D. Diss.,
Dept. of Comp. Sci., USC, TR-85-341, Dec. 1985.

[Hontalas 89a] Philip Hontalas, Brian Beckman,
Mike DiLoreto, Leo Blume, Peter Rcihcr, Kathy
Sturdevant, L. Van Warren, John Wcdcl, Fred Wic-
land, and David Jefferson, “Performance of the Col-
liding Pucks Simulation on the Time Warp
Operating System (Part I: Asynchronous behavior
and sectoring)“, Proc. 1989 SCS Conf. on Dist. Sim.,
Sim. Series Vol21, No. 2, SCS, San Diego, 1989

[Hontalas 89bl Philip Hontalas, Brian Beckman,
David Jefferson, “Performance of the Colliding Pucks
Simulation on the Time Warp Operating System
(Part II: Detailed Analysis)“, Proc. SCS Summer
Comp. Sim. Conf. Austin, Texas, July 1989

[Jefferson 821 David Jefferson and Henry Sowizral,
“Fast Concurrent Simulation Using the Time Warp
Mechanism, Part I: Local Control”, Rand Note N-
1906AF, Rand Corp., Santa Monica, Cal., Dec. 1982

[Jefferson 841 David Jefferson and Andrcj Witkowski,
“An approach to performance analysis of timcstamp-
oriented synchronization mechanisms”, ACM Symp.
on Print. Disf. Comp. (PODC), Vancouver, B.C., Aug.
1984

[Jefferson 851 David Jefferson, “Virtual Time”, ACM
Trans. on Prog. Lung. and Sys. (TOPLAS), July 1985

[Jefferson 871 David Jefferson, Brian Beckman, Fred
Wieland, Leo Blume, Mike DiLorcto, Phil Hontalas,
Pierre Laroche, Kathy Sturdevant, Jack Tupman,
Van Warren, John Wedel, Herb Younger and Steve
Bellenot, “Distributed Simulation and the Time
Warp Operating System”, 72th Symp. on Operating
Sys. Print. (SOSP), Austin, Texas, Nov. 1987

[Lakshmi 871 M. S. Lakshmi, “A Study and Analysis
of the Performance of Distributed Simulations”, TR
87-32, Comp. Sci. Dept., Univ. Texas at Austin, Aug.
1987

[Lavenberg 831 S. Lavenberg, R. Muntz, and 8.
Samadi, “Performance and Analysis of a Rollback
Method for Distributed Simulation”, Performance
‘83, North Holland, 1983

88

[Leung 891 Edwina Leung, John Cleary, Greg Lomow,
Dirk Baezncr, and Brian Unger, “The effect of feed-
back on the performance of conservative algo-
rithms”, Proc. 1989 SCS Conf. on Disf. Sim., Sim.
Series Vol 21, No. 2, SCS., San Diego, 1989

[Lin 89a] Y.-B. Lin and E. D. Lazowska, “Exploiting
lookahead in parallel simulation”, Technical
Report 89-10-06, Dept. of Comp. Sci. and Eng’g, Univ.
of Washington, 1989

[Lin 89b] Y.-B. Lin and E. D. Lazowska, “The optimal
checkpoint interval in Time Warp parallel simula-
tion”, Tech. Report 89-09-04, Dept. of Comp. Sci. and
Eng’g, Univ. of Washington, 1989

[Lin 89~1 Y. B. Lin, E. D. Lazowska, J. L. Baer,
“Conservative Parallel Simulation For Systems
With No Lookahead”,TR 89-07-07, Dept. of Comp.
Sci. and Eng’g, Univ. of Washington, 1989

[Lin 90a] Y.-B. Lin, and E. D. Lazowska, “Optimality
considerations for ‘Time Warp’ parallel simulation”,
Proceedings of the 1990 SCS Conf. on Disf. Sim., SCS,
Volume 22, No. 2, San Diego, Jan. 1990

[Lin 90b] Y.-B. Lin, E. D. Lazowska, and Jean-Loup
Bacr, “Conservative parallel simulation for systems
with no lookahead prediction”, Proc. 2990 SCS Conf.
on Disf. Sim., SCS, Vol. 22, No. 2, San Diego, Jan.
1990

[Lipton 901 Richard J. Lipton and David W. Mizell,
“Time Warp vs. Chandy-Misra: A worst-case com-
parison”, Proc. 7990 SCS Conf. on Risf. Sim., SCS,
Vol. 22, No. 2, San Diego, Jan. 1990

[Lomow 881 Greg Lomow, John Cleary, Brian Unger,
and Darrin West, “A Performance Study of Time
Warp”, Proc. 1988 SCS Conf. Disk Sim., Vol. 19 No.
3, SCS, San Diego, Feb. 1988

[Lubachevsky 891 Boris Lubachevsky “Scalability of
the bounded lag distributed discrete event simula-
tion”, Proc. 7989 SCS Conf. Disf. Sim., Sim. Series
Vol. 21, No. 2, SCS, San Diego, 1989

[Misra 861 Jayadev Misra, “Distributed Discrete
Event Simulation”, Comp. Surveys, Vol. 18, No. 1,
Mar. 1986.

IMitra 841 DiBasis Mitra and I. Mitrani, “Analysis
and Optimum Performance of Two Message Passing
Parallel Processors Synchronized by Rollback”,

Performance ‘84, North Holland, 1984

[Presley 891 Matt Presley, Maria Ebling, Fred
Wieland, and David Jefferson, “Benchmarking the
Time Warp operating system with a computer net-
work simulation”, Proc. 1989 SCS Conf. Disf. Sim.,
Sim. Series Vol. 21, No. 2, SCS, San Diego, 1989

[Reed 881 Daniel Reed and A. Maloney, “Parallel
Discrete Event Simulation: The Chandy-Misra Ap-
proach”, Proc. 1988 SCS Conf. Disf. Sim., Vol. 19, No.
3, SCS, San Diego, Feb., 1988

[Reiher 891 Peter Reiher, Frederick Wieland, and
David Jefferson, “Limitation of Optimism in the
Time Warp Operating System”, Winter Sim. Conf.,
Wash., D.C., Dec. 1989

[Reiher 90al Peter Reiher and David Jefferson,
“Virtual Time based dynamic load management in
the Time Warp Operating System”, Proc. 2990 SCS
Conf. on Dist. Sk., SCS, Vol. 22, No. 2, San Diego,
Jan. 1990

[Su 891 Wen-king Su, Chuck Seitz, “Variants of the
Chandy-Misra-Bryant distributed discrete event
simulation algorithm”, Proc. 1989 SCS Conf. on Disf.
Sim., Sim. Series Vol. 21, No. 2, SCS, San Diego, 1989

[West 881 Darrin West, “Optimizing Time Warp:
Lazy Rollback and Lazy Reevaluation”, M.S. Thesis,
Dept. of Comp. Sci., Univ. of Calgary, Jan. 1988

[Wieland 891 Fred Wieland; Lawrence Hawley,
Abraham Feinberg, Michael DiLoreto, Leo Bloom,
Joseph Ruffles, Peter Reiher, Brian Beckman, Phil
Hontalas, Steve Bellenot, and David Jefferson, “The
Performance of Distributed Combat Simulation with
the Time Warp Operating System”, Concurrency
Practice and Experience, Vol. 1, No. 1, Sept. 1989

89

